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Abstract
Phase transitions into a new phase that is itself metastable are common; instead
of the equilibrium phase nucleating, a metastable phase does so. When this
occurs the system is sometimes said to be obeying Ostwald’s rule. We show
how this can happen when there are impurities present that reduce the barrier to
heterogeneous nucleation of the metastable phase. We do so by studying a Potts
lattice model using Monte Carlo simulation. Thus, which phase forms depends
not only on the properties of the different phases but also on the impurities
present. Understanding why systems obey Ostwald’s rule may therefore require
a study of the impurities present.

1. Introduction

On heating glassy silica it crystallizes into a crystalline form called cristobalite, but the
equilibrium crystalline form is tridymite [1]. The silica has two crystalline forms and it
transforms into the metastable form, not the equilibrium form. Phase transformations into
metastable phases are quite common, and systems that do this are sometimes said to obey
the Ostwald or Ostwald step rule [2]. Typically the appearance of the less stable phase is
ascribed to it being in some way more similar to the original phase it nucleated in than is the
equilibrium phase and so having a lower interfacial tension with the original phase. Within
classical nucleation theory the nucleation rate is proportional to exp(−γ 3/h2), where γ is
the interfacial tension between the nucleating phase and the phase it is nucleating in and h is
proportional to the difference in chemical potential between the nucleating phase and the phase
it is nucleating in [1, 3]. Thus, although h will be larger for the nucleation of the equilibrium
phase, if the interfacial tension γ for this phase is also larger its rate of nucleation may be
slower than that of a metastable phase.

This argument is based on the nucleation of the new phases being homogeneous, i.e.,
occurring in the bulk. However, the nucleation of most new phases is not homogeneous
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but heterogeneous; it takes place in contact with impurities, or with the surface of the
container [1, 4–6]. This implies that which phase nucleates first may be influenced by
differences in the interactions of the nuclei of the different phases with the impurities present.
Here, we use computer simulation and theory to demonstrate that impurities can indeed
determine which phase appears. We find that if we start with a system in which the equilibrium
phase nucleates, we can change only the nature of the impurity and obtain a system in which
the metastable phase nucleates.

We study nucleation in the Potts lattice model [7, 8],via Monte Carlo computer simulation.
This model is one of the simplest models that has the three phases we require. Thus we will
try to obtain an understanding of the generic features of nucleation under conditions when
there is more than one phase that is more stable than the existing phase and when there are
impurities present. We hope our conclusions will apply widely to systems where there are
competing phases that the system can transform into. The nucleus of a new phase is typically
only a few molecules (in the case of the Potts model: spins) across and so even impurities
only a few molecules or spins across are large enough to greatly reduce the free-energy barrier
to nucleation; see for example [9]. Here we will study impurities only a few spins across,
although we could have studied much larger impurities. We defer a systematic study of the
effect of varying the impurity size to later work. See, e.g., [10] and references therein for
recent simulation work on heterogeneous nucleation.

In the next section we define a simple model that has the required three phases. The
third section contains the results of Monte Carlo simulations. These simulations are exact
and demonstrate that the nature of the impurity can indeed determine which phase nucleates.
Having established this, we do not go on and systematically vary parameters such as the size and
shape of the nucleus. Instead, in the fourth section we write down a simple phenomenological
theory for the competitive nucleation of two phases,one of which is assisted by an impurity, i.e.,
the nucleation is heterogeneous,and the other of which is not and so nucleates via homogeneous
nucleation. This allows us to calculate how much an impurity needs to reduce the barrier
to nucleation in order to determine which phase nucleates, as a function of the density of
impurities, the interfacial tensions between the phases etc. The final section is a conclusion,
where we discuss the relevance to experiment.

2. Potts model

Consider the three-state Potts model [7] on a simple cubic lattice in three dimensions. On each
lattice site i there is a spin si that can take one of three values: 1, 2 or 3, and that interacts with
its six nearest neighbours. The interaction energy of a pair of neighbouring spins i and j is
−Jδsi s j , i.e., the only interaction is between spins that have the same spin value. J is positive,
so on cooling the model undergoes a symmetry-breaking transition from a state in which a third
of the spins have each spin value to one of three ordered phases, in each of which one of the
spin values predominates [7]. These are the spin-one, spin-two and spin-three phases. In the
absence of any external fields all three phases have the same free energy. The transition occurs
at J/kT = 0.55 [8]. k and T are Boltzmann’s constant and the temperature, respectively.
Here we work solely at the low temperature J/kT = 0.8.

We will consider not the disorder–order transition but transitions between the three ordered
phases. To do so we need to consider external fields that break the symmetry between these
phases. The three external fields hk , k = 1, 2, 3, couple to the spins via terms −hkδsi k , i.e.,
a positive hk favours the phase with spins predominantly taking the value k. If, for example,
the hk have values h3 > h2 > h1, then the spin-three phase is the equilibrium phase and the
spin-two phase is more stable than the spin-one phase. We will always start in the spin-one
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Figure 1. Computer simulation snapshot of a small simulation box 20 spins across. The system
is in the spin-one phase at coexistence, h1 = h2 = h3 = 0, at a temperature J/kT = 0.8. Sites
with spins taking the values two and three are filled with green and very pale cubes, respectively.
The fixed spins that form the impurity are dark red. The impurity favours the spin-two phase, it is
a p = 2 impurity, and it is a square monolayer with sides eight spins long. Sites with free spins
taking the value one are left empty.

(This figure is in colour only in the electronic version)

phase and always set h1 = 0. Then by increasing h2 and h3 from zero we will make both the
spin-two and spin-three phases more stable than the spin-one phase.

We also require an impurity that favours either the spin-two or the spin-three phase. We
use an impurity that is a square monolayer of 8-by-8 spins that are fixed and that interact with
adjacent spins with an energy −2Jδsi p, where when p = 2 (p = 3) we have an impurity with
a strong affinity for the spin-two (spin-three) phase. See figure 1 for a snapshot showing the
impurity. We refer to the spins that can flip between the three values as free spins to distinguish
them from the fixed spins that form the impurity. At the temperature we work at the interaction
between the fixed spins of the impurity and the free spins is strong enough that if the impurity is
expanded into an infinite plane, wetting occurs. See for example [11, 12] for an introduction to
wetting. For example, if p = 2, at equilibrium at coexistence, h1 = h2 = h3 = 0, impurities
in either spin-one or spin-three phases are wetted by the spin-two phase. In between the,
infinite, impurity and the bulk phase there will be a macroscopic layer of the spin-two phase
and then an interface between the spin-two phase and either the spin-one or spin-three phase.
We verified this via computer simulation.

Putting all the interactions together, the energy of a configuration of the spins is

H = −J
∑′

i j
δsi s j −

∑

k

hk

∑

i

δsi k − 2J
∑′′

i
δsi p. (1)
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Figure 2. Plot of the fractions of spins taking the values two (top set of points) and three (bottom
set). A point is plotted every cycle, i.e., one attempted flip per spin. The simulation is stopped after
1881 cycles as then the spin-two phase has nucleated and grown so that 45% of the spins have the
value two. The number of spin-threes fluctuates: on average a little less than 2% of the spins are
spin-threes, this corresponds to around 500 spin-threes. This relatively small number fluctuates.
The number of spin-twos fluctuates much more.

The first, dashed, sum is over all nearest-neighbour pairs of free spins. The two sums in the
middle terms are over the three applied fields and over all spins. The double-dashed sum in
the last term is over all free spins adjacent to the impurity.

3. Simulation results

We simulate using the standard Metropolis Monte Carlo method for spins. Each move starts by
selecting one of the free spins at random. This spin is then flipped to either of the two other spin
states with equal probability. If this flip lowers the energy it is always accepted; if it increases
the energy it is accepted with a probability that is the exponential of minus the negative of
the energy change over kT . See [13] for an introduction to the Monte Carlo method. Our
simulations were done on a lattice of 30 by 30 by 30 spins with periodic boundary conditions.
This is a somewhat larger lattice than shown in the snapshot of figure 1. The appearance of
a new phase was determined by monitoring the fraction of spin-twos and spin-threes. Once
the fraction of spin-twos exceeded 45% the simulation was stopped and the spin-two phase
was taken to have nucleated. Similarly, if the fraction of spin-threes exceeded 45% the spin-
three phase was taken to have nucleated. See figure 2 for a plot of the fractions of spins that
were spin-twos and spin-threes as a function of simulation time, for one simulation run. The
fraction 45% is arbitrary, varying it even by large amounts does not change the result in almost
all cases. Note that then there are over ten thousand spins in the new phase so the nucleus is
clearly post-critical, it is extremely unlikely that its growth will stop. In most cases we repeated
the simulation five times with the same values of h2 and h3, but near the borderlines between
different nucleation behaviours we performed ten simulation runs. If neither the spin-two nor
the spin-three phase nucleated within 100 000 cycles, the simulation was abandoned. There
the nucleation rate is too low to be measured via direct simulation.

We start all our simulations by setting h1 = h2 = h3 = 0 and then equilibrating the
system in the spin-one phase. For our first simulations we then instantaneously increased both
h2 and h3 to 0.2. The spin-two and spin-three phases are then equally stable, and more stable
than the spin-one phase. We found that if the simulation box contains a p = 2 impurity, which
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Table 1. Results of computer simulations of a system of 303 Potts spins at J/kT = 0.8 with a
p = 2 square impurity 8 spins along each side. Starting with a system equilibrated in the spin-one
phase at h1 = h2 = h3 = 0 the system has h2 and h3 instantaneously increased to the values
shown. Formation of the spin-two phase is indicated by a ‘2’ and formation of the spin-three phase
by a ‘3’. A ‘0’ indicates that neither phase nucleated within 100 000 cycles. The ‘2/3’ indicates
that of 10 simulation runs 3 resulted in the spin-two phase and 7 in the spin-three phase. Here
the barriers to formation of these two phases are comparable. Finally, 3∗ indicates that both the
spin-three and the spin-two phase nucleated but that it was the fraction of spin-threes that grew to
exceed 45%.

h2 = 0.1 0.2 0.3 0.4

h3 =
0.2 0 2 2 2
0.3 0 2 2 2
0.4 3 2/3 2 2
0.5 3 3 3∗ 2

has an affinity for the spin-two phase, then the spin-two phase nucleates, whereas if the box
contains a p = 3 impurity, then the spin-three phase appears1. If h3 is increased to 0.3, keeping
h2 = 0.2, then with a p = 2 impurity the spin-two phase still appears not the spin-three phase,
even though the spin-three phase is now more stable. As we expect if at h2 = 0.2, h3 = 0.3,
the p = 2 impurity is replaced by a p = 3 impurity it is the spin-three phase that appears. So,
it is the impurity that is controlling which phase appears. This is the key result of this work.
In table 1 along the diagonal, i.e., h2 = h3, and also even for h2 = h3 − 0.1, it is always the
spin-two phase that appears. However, returning to a system with a p = 2 impurity, if while
h2 is kept at 0.2, h3 is further increased to 0.5, it is the spin-three phase that nucleates. As the
stability of the equilibrium phase with respect to that of the metastable phase is increased, by
increasing h3 −h2, beyond a certain limit our impurity no longer controls the phase that forms.
For h2 = 0.2 and h3 = 0.5, p = 2 and p = 3 impurities both result in the spin-three phase
forming. Results for a number of different values of h2 and h3, are given in table 1. These
results are for a p = 2 impurity. Of course, due to the symmetry of the model, results for a
p = 3 impurity can be obtained by simply swapping the labels 2 and 3 in table 1.

Stranski and Totomanow [14] argued that when a system is in a phase which has a higher
free energy than more than one other phase the phase that nucleates is the one with the lowest
nucleation barrier. We agree, but as nucleation is typically heterogeneous, which phase has the
lowest barrier will depend on what impurities are present, as well as on properties of the phase
itself. As an example, consider increasing the size of the impurity. If the impurity is expanded
into an infinite plane, then it will be wetted by the spin-two phase. Thus, if the impurity is
large enough then the spin-two phase will nucleate effectively at h2 = 0 as already at this
value of h2 a macroscopic wetting layer of the spin-two phase will be present on the surface
of a macroscopic impurity. Thus, if such a large impurity is present the spin-three phase will
only get a chance to nucleate in the spin-one phase if the spin-two phase is actually higher in
free energy than the spin-one phase, h2 < 0. Note that if h3 is sufficiently large the spin-three
phase may of course nucleate from the spin-two phase.

1 When one solid nucleates on a defect in another solid phase, the free energy of the nucleus, and hence of course
the nucleation barrier, will depend on the orientation of the lattice planes in the crystalline nucleus with respect both
to the phase it is nucleating in and the orientation of the defect. Our simple Potts model with h2 = h3 is a simple
model of a solid that can nucleate in only two discrete orientations with respect to the parent phase. Then a p = 2
impurity is a simple model of a defect that favours the spin-two ‘orientation’. Defect controlled orientation of the
nucleating phase has been observed in experiment, see for example the work of Furuhara and Maki [18] who find that
the orientation of the defects controls the orientation of the face-centred cubic phase that nucleates in a body-centred
cubic phase of a titanium alloy.
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4. Phenomenological theory for the competitive nucleation of two phases

A sufficiently large impurity with a surface wetted by a new phase can reduce the nucleation
barrier to zero, even at coexistence, where the barrier to homogeneous nucleation is
divergent [3]. Alternatively, if a dilute impurity does not prefer the nucleating phase it will not
participate in nucleation. Denoting the barriers to homogeneous and heterogeneous nucleation
by �F∗

HOMO and �F∗
HET, respectively, the magnitude of the difference δ is then defined by

�F∗
HET = �F∗

HOMO − δ; it is the free energy difference between the critical nuclei. For a
sufficiently large impurity with a surface that is wetted when the surface is infinite, δ can be
made arbitrarily large. It can also be effectively zero. Note that δ will in general be a complex
function of h2 and h3 because impurities will change the shape and size of the critical nucleus.

We would like to explore the nucleation behaviour for the parameter space composed of
the driving forces for nucleation of the spin-two and spin-three phases, h2 and h3, and the
effect of the impurity, δ. For simplicity, we will only consider p = 2 impurities that favour
the spin-two phase, and we will neglect homogeneous nucleation of the spin-two phase. Thus
we will consider only the competition between homogeneous nucleation of the spin-three
phase and heterogeneous nucleation of the spin-two phase. It is easy to relax this constraint
but it introduces additional variables without changing the qualitative nature of the behaviour.
Exploring the parameter space via computer simulation would be very laborious but fortunately
classical nucleation theory [3] should be accurate enough for this purpose. Classical nucleation
theory has been shown to be very reasonable for homogeneous nucleation in the Ising model
well below this model’s critical temperature, where the transition is strongly first order as it is
here; see for example [15] and references therein.

We will start with the classical nucleation theory [3] for homogeneous nucleation of the
spin-three phase in the spin-one phase. Although this is a little inaccurate we consider nuclei
to be always perfectly cubic, i.e., to consist of λ by λ by λ spins. The free energy change on
forming a nucleus is just the sum of a bulk term from creating a volume λ3 of the spin-three
phase and a surface term from creating 6λ2 of spin-three–spin-one interface. Then the free
energy of a nucleus of the spin-three phase is [3]

�F3 = −λ3h3 + 6λ2 J, (2)

where we used the low temperature approximation for the interfacial tension between the spin-
one and spin-three phases γ � J . The rate is determined by the free energy of the nucleus,
equation (2), at the top of the barrier, which is �F∗

3 = 32J 3/h2
3. The rate of homogeneous

nucleation of the spin-three phase, per lattice site, r3, is then [3]

r3 = ν exp[−32J 3/(h2
3kT )], (3)

where ν is an attempt frequency; it is of the same order as the frequency of spin flips at a site.
The rate of homogeneous nucleation of the spin-two phase is just that given by equation (3)
with the field h2 replacing h3. The interfacial tension between the spin-one and spin-two
phases will be very similar to that between the spin-one and the spin-three phases at these low
temperatures. Then, according to the definition of δ the barrier to heterogeneous nucleation
of the spin-two phase is �F∗

2 = 32J 3/h2
2 − δ. The rate of heterogeneous nucleation of the

spin-two phase, per lattice site, r2, is therefore

r2 = νρi exp[−32J 3/(h2
2kT ) + δ/kT ], (4)

where ρi is the number of impurities divided by the number of sites. We expect the density of
impurities to be very low so we fix ρi = 10−6. Also, for an impurity of specific material, size
etc, δ will be a function of h2 and h3. We ignore this dependence here and treat δ as simply
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Figure 3. Plot showing the conditions where the spin-two phase nucleates first, above the curve,
and, where the spin-three phase nucleates first, below the curve. Each of the two curves gives the
value of δ at which the nucleation rates of the two phases are the same, as a function of h3 − h2. In
the case of the solid curve the two rates equal 10−6ν whereas for the dotted curve the rate equals
10−8ν. The impurity concentration ρ = 10−6.

a shift in the nucleation barrier. Having determined how large a shift is needed we can then
work back to estimate the properties the impurity must have in order to generate it.

Let us consider systems where the difference h3 − h2 is fixed, so the spin-three phase is
a fixed amount more stable. Then h3 − h2 is one parameter, δ is the other. Having fixed both
these parameters we can start with h2 = h3 = 0 and then increase h2 and h3 in parallel until
the nucleation rate of either the spin-two, equation (4), or the spin-three, equation (3), phase
becomes appreciable. The phase whose nucleation rate is the first to become appreciable will
then be the one that appears. It is a little arbitrary what nucleation rate we consider to be
appreciable, we select values of 10−6 and 10−8ν per site as trial values. We can then divide the
parameter space of systems in the (h3 − h2)–δ plane into a region where on increasing h3 and
h2 at fixed h3 − h2 the rate of nucleation of the spin-two phase equals 10−6 or 10−8ν first or a
region where that of the spin-three phase is the first to hit one of these values. We have done so
and plotted the results in figure 3; the solid and dashed curves separate the two regions for the
different nucleation rates. We see that as δ increases the spin-two phase appears first even for
larger and larger values of h3 −h2, i.e., even when the spin-three phase is more and more stable
relative to the spin-two phase. Impurities that strongly favour the metastable spin-two phase,
i.e., ones with large values of δ, result in the spin-two phase pre-empting the spin-three phase
even when the spin-three phase is significantly more stable. This is true even for very low
impurity densities ρ. They cause this less stable phase to appear. Note that in figure 3, δ � 20,
so our neglect of homogeneous nucleation is always reasonable as the rate of homogeneous
nucleation as at least a factor 106 exp(−20) � 1 smaller than the rate of heterogeneous nucle-
ation. Also, the trend seen in figure 3 from nucleation of the spin-two phase to nucleation of the
spin-three phase as h3 −h2 is increased is just the same as that in the results of table 1. A given
impurity only controls nucleation, in the sense of causing the metastable phase to appear, if the
difference in stability between the metastable phase and the equilibrium phase is not too great.

Note that for the Potts model, formation of the spin-two phase slows down formation of
the spin-three phase. This is because the interfacial tension between the spin-two and the spin-
three phases will be very similar to that between the spin-two and spin-three phases; both will
be �J at the low temperatures we are working at, but the driving force for nucleation from the
spin-two phase is only h3 − h2 not h3. In other systems, for example alkanes [16], formation
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of a metastable phase may accelerate the formation of the equilibrium phase. See [17] for a
theoretical description of that effect.

5. Conclusion

It has been known since Ostwald’s time in the nineteenth century that when a phase has a higher
free energy than two or more other phases it is often not the equilibrium one of these other
phases that appears but a metastable one [1]. This was based on experimental observations.
Here we have used computer simulation and a simple theory, and seen that which phase appears
can be controlled by the impurities that are present. It may be that a system contains impurities
that strongly favour a metastable phase. If so, then the metastable phase may nucleate on
these impurities under conditions where the equilibrium phase does not nucleate, because the
barrier to nucleation of the equilibrium phase is too high. Thus, if we are to understand why
a system obeys Ostwald’s rule, we may need to consider the effect of the impurities present.
It should be noted that the usual explanation for Ostwald’s rule, that the interfacial tension for
the metastable phase is lower than for the equilibrium phase, is not applicable here: these two
interfacial tensions will be very similar for the low temperature Potts model.

Here, we used Monte Carlo simulation to study heterogeneous nucleation. Currently,
experimental data are interpreted using the classical nucleation theory of heterogeneous
nucleation [1, 4], but this is often unsatisfactory; see for example [5]. Some of the assumptions
that underlie the classical nucleation theory of heterogeneous nucleation are known to be poor,
particularly when the impurity strongly attracts the new phase [5]. Thus computer simulation,
which does not make these assumptions, is useful. Experimental systems can be mapped
onto the current simple model or generalizations of it if the supersaturations and interfacial
tensions are known. Even if the impurities in the experimental system are uncharacterized, then
simulations can be performed with a range of impurities in order to make plausible estimates
of how strongly the impurities in the experimental system are interacting with the nuclei.
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